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Abstract – Two Supercomputer-based parallel visualization 
systems, RIVA and ParVox, are presented in this paper.  
RIVA (Remote Interactive Visualization and Analysis) 
System is a parallel terrain rendering system and ParVox 
(PARallel VOXel renderer) is a parallel volume rendering 
system for multiple-variable, time-varying, 3D volume 
datasets in structured grid and unstructured grid.  Both 
systems are designed for interactive visualization of  very 
large scientific datasets on remote supercomputers.  The 
system architectures and the parallel algorithms are  
described in this paper.  In addition,   we will use North 
Atlantic Ocean Model as a sample application to demonstrate 
how RIVA and ParVox can help scientists to discover and 
present their scientific results. 
 

I. INTRODUCTION 
 

There are two main driving forces behind the 
development of software-based parallel rendering systems:  
1. the use of supercomputers for large scale scientific 
modeling and simulations enables the modelers to generate 
larger data volumes in greater speed, thus, it becomes 
impractical to transfer, store, and visualize large volumes 
of datasets on user’s local workstation.  Second, high-
resolution terrain rendering and volume rendering of large 
datasets demand both extensive computational and storage 
resources which a workstation can hardly provide.     

Parallel rendering algorithms are mainly based on 
three different sequential approaches: ray casting, 
shearing, and forward projection.  Ray-casting can be 
easily parallelized using  image space decomposition, but 
it requires input data set available at every rendering node, 
thus not suitable for distributed memory parallel 
architectures.  Forward projection is used by most graphics  
hardware for polygon rendering.  It is ideal for object 
space decomposition and   is the most efficient algorithm 
for rendering very large datasets.  

We developed two new parallel rendering algorithms 
based on the forward projection approach, the whole earth 
renderer for terrain datasets and the parallel splatting 
algorithm for 3D volume datasets.  We also designed and 
implemented two distributed visualization systems around 
these rendering algorithms. In section II, we  present the 
first system, RIVA (Remote Interactive Visualization and 
Analysis) system, for large terrain data sets [1].  In section 
III, we present the second system, ParVox (PARallel 

VOXel Rendering) for time-varying, multi-variable 
volume data sets [2].   In Section IV, we present an ocean 
model applica-tion and its visual results using both RIVA 
and ParVox.   
 

II. RIVA SYSTEM OVERVIEW 
 

The kernel of the RIVA system is a parallel terrain 
renderer running on parallel supercomputers.  The renderer 
produced 3D perspective views of terrain using earth or 
planetary images or simulation datasets with coregistered 
digital elevation data.  Because the underlying geometric 
model is that of a sphere, the renderer can accommodate 
global datasets; accordingly we refer to this renderer as the 
whole earth renderer. 
 
A. System Architecture 
 

Around the core renderer, RIVA is equipped with a 
suite of Graphic User Interface (GUI) programs for data 
navigation, display and animation editing.  As depicted in 
the system architecture diagram in Fig. 1,  the main RIVA 
data navigator program, Flexible Flyer, resides on a SGI 
workstation.  A low resolution copy of the dataset is 
loaded into the Flexible Flyer and user can navigate the 
dataset and select the desired views.  As the user navigates, 
his/her viewpoint is transmitted to the whole earth renderer 
residing on a remote supercomputer via a network 
interface program, NetHost. The renderer renders the 
image using a full resolution copy of the dataset and sends 
the resulting image back to a display window, 
receive_display, on the user’s workstation.   

RIVA is designed for both interactive exploration of 
large datasets and batch generation of animations.  The 
Flexible Flyer has a key frame editor built in where key 
frames can be inserted, appended, modified, and 
previewed.  A separate 2-D map display window, xshow, 
displays the key frames or the flight path on a 2D map of 
the data.  It helps a user to identify his location and 
direction in a global orientation and also help a user to 
select key frames in a more even pace.    Once the key 
frames are selected, the flight path is calculated using a 
cubic spline algorithm.  The renderer then renders the 
flight path in the batch mode and save the animation 
frames into disk. 
 



The middle section of Fig. 1 is the network interface 
programs for RIVA.  NetHost is the interface (or, host) 
program between the GUI and the renderer.  RIVA uses a 
text-based command language  to communicate with the 
renderer.  NetHost is the one who processes and dispatches  
commands, receives and distributes results.  The 
commands may come from a network interface, such as a 
socket stream fed by the GUI program, or from a disk file.  
The Router is a routing daemon that facilitates dynamic, 
reliable, multi -casting message passing services.   It 
detached the physical connection between the renderer and 
the GUI program, thus allowing either part of the program 
to run as a stand alone entity,   a renderer to feed multiple 
displays on different workstations, or even one GUI 
program to control two parallel renderers.  
 
B. Parallel Algorithm 
 

Rather than using geometric objects (such as triangle 
strips) to represent the digital terrain as all the hardware-
based terrain renderers do, the whole earth renderer 
represents and renders the terrain pixel by pixel.  We use a 
parallel forward projection rendering algorithm with both 
object space decomposition and image space decompo-
sition. The detail of the algorithm can be found in [1], here 
is a brief summary of the algorithm. The input data, both 
image and elevation  in either cylindrical projection or 
sinusoidal projection, are equally divided into small tiles 
and distributed to each rendering processor.  The processor 
applies the transformation matrix to its local data and 
transforms them into image space coordinate.   Each 
rendering processor produces patches of images scattered 
in the final image.  The image patches are then merged and 
composited into the final image using a binary-swap 
method.    The image tiles can be rendered in any order 
and there is no communication required in the 
transformation stage.  The rendering processors synchro-
nize globally before the final compositing begins. The 

rendering speed is determined by the slowest processor in 
the transformation stage. 

Several optimization techniques have been imple-
mented in RIVA to improve the rendering speed and image 
quality: 

 
Data pyramiding. Also known as mip-mapping.  The 
terrain is rendered at a different resolution based on its 
distance to the viewpoint.    This technique is used to 
reduce computation as well as eliminate aliasing problem 
in the far field.   We generate data pyramid on the fly to 
save memory space at the cost of some computation 
overhead.   
  
Culling.   Several culling techniques are used to eliminate 
the input tiles that fall outside the field of view of a given 
viewpoint.  Horizon Test calculates the distance from the 
viewpoint to the center of each tile and eliminates the tiles 
that fall behind the horizon.  This test can eliminate almost 
half of the tiles in a global dataset.  Tile Test eliminates the 
tiles whose projected areas fall outside the viewport.   
 
C. Functionality 

 
There are several unique features that distinct RIVA 

from other terrain renderers:  
 

Multiple Data Representations – Internally, RIVA repre-
sents the data using a spherical model regardless it is a 
global dataset or a regular grid dataset.   Externally, RIVA 
can process data  in either 2D Cartesian, 3D Cartesian, or 
3D Polar coordinates.   The dataset can be stored in either 
Sinusoidal projection to save space or in Cylindrical 
projection for efficient processing.  RIVA is flexible and 
trying to accommodate different application need and 
different data representations. 
 
Multiple Surface Rendering – RIVA can render multiple  
terrain surfaces with different resolution, different data 
format, and different coverage.   The multiple surfaces can 
be combined using various blending methods.  Fig. 2 is   
an example of alpha-blending of two surfaces.  The top 
surface is a grayscale image of Coronado Island at 2.25 
meter resolution (Fig. 2c) and the bottom surface is a color 
LandSat image at 30 meter resolution (Fig. 2a).  By setting 
the opacity of the top surface to 0.58, it gives you a 
colored image at 2.25 meter resolution (Fig. 2b).  Fig. 3 is 
an example of zbuffer compositing.  The top surface is a 
North Atlantic Ocean surface with color representing   
ocean surface temperature.  The bottom surface is a 
topographic map of the ocean bottom.  The top surface is 
raised up so that the two surfaces can be separated.   
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Fig. 1 The RIVA System Architecture  



 

 
Fig. 3 Multiple Ocean Surfaces composited by zbuffer  

 
Large Dataset Rendering – RIVA allows out-of-core 
rendering for datasets that exceed the capacity of the 
physical memory.   A lower resolution sample of the 
original dataset has to be prepared in advance.  RIVA 
loads the lower resolution dataset and renders it until the 
data pyramiding algorithm identifies that a higher 
resolution image tile is needed.  The full resolution image 
tile will then be loaded into memory.  A memory cache is 
used to keep the most recent tiles used to reduce disk I/O.  
RIVA also renders time-varying datasets generated by 
simulations.  Similar to out-of-core rendering, only the 
data for the first time step resides in the memory.  The rest 
data will be loaded into memory when the animation starts.  
 
High Resolution Animation – RIVA is not only scalable 
to large input datasets  but also scalable to large image 
outputs.   RIVA images are not limited to the framebuffer 
size or the screen resolution as other terrain renderers do.   
RIVA can render a large image in multiple passes by 
partitioning  the images into multiple viewports.   Theoreti-
cally, there is no limit to the image size in RIVA.  We have 
done three screen panoramic movie and animations in HD 
format.  
 

D. Implementation 
 

RIVA has gone through several evolutions.  An earlier 
version of the algorithm was first developed on Intel 
Paragon.   The RIVA architecture was  designed and first 
implemented on the Cray T3D using its shemem libarary.  
The Flexible Flyer was implemented using OpenGL and 
SGI’s OpenInventor API.  RIVA has been used as a 
production tool for several animation  products in JPL  until 
Cray T3D was decommissioned in 1998.   In 2001, RIVA 
was ported to SGI Origin 2000 using a combination of 
shared memory and message passing model.  New 
functionalities and new tools were added into RIVA to 
improve its key frame editing capability and to read input 
image data in standard image formats.  The first RIVA 
release was made public in 2001. 
 

III. PARVOX SYSTEM OVERVIEW 
 
A. System Architecture 

 
 ParVox is a parallel volume rendering system for 

either distributed visualization, o r as a rendering API to be 
linked with application programs.  As a distributed 
visualization system shown in Fig. 4,  ParVox provides an 
X window based GUI program for display and viewing 
control, two input modules that read structured and 
unstructured 4D datasets in NetCDF format, respectively, 
two core renderers, one for   structured grid dataset and 
one for unstructured grid dataset, and an output module 
that supports multiple output formats, including wavelet 
image compression format for  both loseless and lossy 
compre-ssions.  The input, the renderer, and the output 
modules form a functional pipeline using MPI for inter-
module communication.   As a rendering API, ParVox 
supplies users with a parallel input library to read 4D 
structured grid and unstruct ured grid datasets in NetCDF 
format, an OpenGL style parallel rendering API for 
graphic controls and a parallel wavelet image compression 
library.    
 

 
Fig. 2 Multiple Surfaces composited by blending, (a) 30 meter LandSat, (b) two surfaces blended with 
the 2.25 meter dataset at opacity=0.58, (c) 2.25 meter grayscale dataset  



ParVox can visualize 3-D volume data as a translucent 
volume with adjustable opacity for each different physical 
value, or as multiple isosurfaces at different thresholds and 
different opacities.  It can also slice through the 3D volume 
and view only a set of slices in either of the three major 
orthogonal axes.  Moreover, it is capable of animating 
time-sequence 3D datatsets at any selected viewpoint.   
 
B.    Parallel Algorithms  
 

ParVox uses a parallel splatting algorithm for 
structured grid datasets [2].    Similar to the whole earth 
renderer, the splatting algorithm is a forward projection 
algorithm that i s ideal for parallel execution with object 
space decompo-sition.   The input volume is partitioned 
into small interleaving blocks distributed into each local 
processor’s memory.  Each processor first renders its 
volume blocks locally by splatting and compo siting each 
voxel to the local accumulation buffer.  The sub-image is 
then composited with other sub-images from other 
processors.  The global image compositing is done in 
parallel by partitioning the image space into small 
interleaving regions and assigni ng multiple regions to each 
of the processors.  Communication is required to 
redistribute the sub -images from the splatting processor to 
the compositing processor.  The splatting can be done in 
any order, but the image compositing has to be in either 
the front-to-back or the back-to-front order.  Therefore, 
final compositing cannot start until the splatting process is 
finished and all the sub-images have been sent to the 
destination compositing processor.  However, the sub -
image will be redistributed asynch ronously right after it’s 
been generated. By overlapping the splatting and  the 
image redistribution process, a major portion of 
communication overhead can be hidden. 

The unstructured grid volume renderer in ParVox is an 
adaptation of Ma’s cell-projection  parallel renderer [3]. 
The volume is represented as a list of vertices and a list of 
tetrahedron cells.  The cells are evenly distributed into the 
local memory of the rendering processors in order to 

achieve better load balancing.  A synchronized 
preprocessing is then performed to organize the local cells 
into a space partitioning tree.   The local cells are 
partitioned into spatial regions such that each region 
represents equal amount of rendering load.  The cells will 
be rendered in the order of its region location in all the 
processors.   Each cell is scan converted into ray segments 
in the image coordinates.  The ray segments will then be 
routed to the merging processor for final merging.  The 
scan conversion and ray-segment redistribution are 
interleav ed in a similar fashion as in the splatting 
algorithm.   The ray-segment can be merged as long as the 
adjacent rays are both present.  Therefore, the spatial 
partitioning tree allows the cells in the neighborhood be 
rendered about the same time, thus reducing the memory 
usage and im proving the overall efficiency.  When the 
scan conversion and ray-segment merging are finished, 
each processor sends its completed sub-image to the output 
module where the final image is assembled, compressed 
and sent out to display.   
 
C.     Functionalities 
 

ParVox was designed for distributed visualization 
assuming the end user has a low bandwidth network 
connection and a limited function workstation at his 
desktop.  It also assumes that the user has access to a 
remote supercomputer and has his dataset residing on the 
supercomputer’s disk.  ParVox has unique features to 
facilitate interactivity in such an environment:  
 
Functional Pipelining --  ParVox contains three modules, 
the input module, the rendering module, and the output 
module.  Each module can be run in parallel and three 
modules are connected as a functional pipeline using  MPI 
to communicate with each other.  The functional pipeline 
allows overlapping data input, rendering, and image 
compression.  We can use different number of processors 
for each module to balance the load of each module. 
 
Parallel Wavelet Compression – A parallel implemen-
tation of  ERIC (Efficient resersible Image Compression) 
[4] algorithm is used in ParVox for image compression.   It 
supports both loseless and lossy compression and it allows 
for progressively accurate approximation based on the 
network bandwidth.   Empirical results show that a low -
frequency image can preserve its image quality with 
insignificant degradation at a compression ration  as high as 
50. 
 
X Window Based User Interface – The ParVox GUI was 
designed using X/Motif  and runs on any Unix 
workstation.  It provides a user -friendly, interactive 
environment for viewing and rendering control.  Multiple 
control panels are provided to control the direct rendering, 
iso-surface classification, viewing transformation, lighting 
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Fig. 4 The ParVox System Architecture  



and material setting.  ParVox also integrates the color and 
opacity editing program, icol [5] developed by AHPCRC, 
University of Minisota.  Animation control and ins tant 
playback is also built in for animation .  The rendering 
parameters can be saved into a NetCDF file and be 
restored later or used for batch-mode processing. 
 
D.   Implementation 
 
  The core renderer of ParVox was first implemented on 
the Cray T3D and Cray T3E using shmem one-sided 
communcation API.  It was later ported to MPI and runs 
on SGI Origin 2000,  HP Exemplar System and Beowulf 
Clusters.    The ParVox GUI runs on any system capable of 
running X window.  Two ParVox system has been released 
for public use. The document is available at 
http://alphabits.jpl.nasa.gov/ParVox .  
 

IV. APPLICATIONS 
 

RIVA has been used as a production tool to produce 

animations using LandSat and Planetary datasets for publ ic 
outreach and scientific education.  ParVox has been used 
to visualize various time -varying, multiple -parameter, 3D 
datasets.  In this paper, we will use ocean modeling 
application to demonstrate how these two visualization 
tools help scientists to disco ver scientific results from their 
massive modeling data.   

Ocean modeling has played an important role in 
obtaining comprehensive understanding of world ocean 
circulation, monitoring current climatic conditions, and 
predicting future climate changes.   JPL has conducted a 
40-year simulation of a 1/6 degree ocean model [6] for the 
North Atlantic Ocean using Parallel Ocean Program (POP) 
[7].  The total data generated by this model is 2.8 
Terabytes assuming a snapshot is saved for every three 
simulation days.  The model generates both 2D data, such 
as surface temperature and surface height, and 3D data, 
such as tem perature, salinity, and velocity.     

We used RIVA to visualize the 2D ocean surface data 
and ParVox to visualize the 3D volume data.  In Fig. 6b, 
the ocean surface temperature data is represented using a 

 
Fig. 5 North Atantic Ocean (a) the velocity volume with the ocean bottom map, (b) ocean surface temperature 
shaded relieved by the surface height, (c) salinity volume with red for high concentration, (d) using slicing to 
cut through the salinity volume.  

 



spectrum colormap with purple for low temperature (0? 
Celsius) and red for high temperature (32? Celsius).  The 
image is then shaded relieved by the surface height data.  
The height variation is very visible around the north coast. 
The combined dataset is then wrapped around a global 
earth image dataset.  The ocean surface has the opacity set 
to 1.   In this image, we can see the separation of Gulf 
Stream off the coast of Cape Hatteras which is not 
detectable in a lower resolution ocean model. 
 

Fig. 5a shows the magnitude of the ocean velocity 
vector volume.  The transfer function was set such that 
only the high value has non -zero opacity thus highlighting 
the high velocity area.  It is clear that most of the Atlantic 
ocean is calm except for the coastal area.  The white 
background is the ocean bottom topography that provides a 
reference for this mostly translucent image.  In a 5-year 
animation of the ocean velocity, it is clear to see the 
progression of the mesoscale eddies in the Caribbean Sea.  
Fig. 5c and Fig 5d are two different representation of the 
salinity volume.  Salinity is another driving force of ocean 
energy transportation.  The high saline water in the 
Mediterranean Sea (shown in red) is trying to escape to the 
Atlantic Ocean via the narrow Gibraltar strait.  Fig. 5c uses 
a translucent volume to highlight the high salinity area and 
Fig. 5d cut out a quarter of the volume using the slicing 
capability of ParVox in order to see the salinity changes in 
the lower depth of the ocean.   

We produced animations for  all the variables shown 
in Fig. 5.  The animations help scientists to understand the 
major features and the evolution of the Caribbean Sea 
eddies in 3D space.  It also give scientist an ef fective 
visual tool to prevail their scientific results to the general 
public.  
 

V.   CONCLUSION 
 

We have presented two parallel rendering systems, 
RIVA for terrain visualization and ParVox for volume 
rendering in this paper.   Although designed for different 
applications, the two systems share the same design 
philosophy:  
 
? ? Scalability – Both ParVox and RIVA are scalable to  

input dataset size,  output image size, and the machine 
size.  With the built -in out-of-rendering capability, 
there is no limit to the size of the data they can render.   
Hardware renderers are limited to its physical 
capacities, such as graphic memory and texture 
memory.  Once the problem size is beyond its 
hardware limit, it either has serious performance 
degradation or simply cannot handle it.  

? ? Flexibility – ParVox and RIVA were built to address 
application’s need.   Each dataset has its unique 
characteristics and may require a different way to 
visualize it.  Our systems are equipped with a rich set 

of rendering modules and a user-friendly GUI for a 
user to pick and choose the best rendering parameters 
for his dataset.     

? ? Distributed Visualization – Distributed visualization 
is the core design concept for ParVox and RIVA.  Our 
systems are optimized not only in computation, but 
also in end-to-end frame delivery over low speed 
network.     
We are currently applying RIVA and ParVox to 

visualize the Earthquake simulation datasets.  Similar to 
the ocean model, the earthquake datasets contain both 
surface data such as surface deformation and  3D volume 
such as stress field.  Hopefully by the time of the 
conference,  some of the preliminary results can be 
presented. 
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